Case Study

DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design

DeGolyer and MacNaughton

May 29, 2018

Dallas, Texas

Worldwide Petroleum Consulting

Workflow

Multi-step process to assess well performance and completion design

Preliminary: Rely on report final results. This document of preliminary review on the used for any

for specific conditions and s released for the purpose date shown. It is not to be other purposes

Production Diagnostics

Deliverables of single well production diagnostics are metrics, flow regimes, etc.

Diagnostics Dashboard

Case Study DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design Preliminary: Rely on report final results. This document of preliminary review on the used for any

for specific conditions and is released for the purpose date shown. It is not to be other purposes.

Production Diagnostics

Correlation of metrics from diagnostics yields potential drivers of productivity

Metrics from well performance diagnostics, completion parameters, and reservoir properties are compared in search of potential drivers of productivity

Preliminary: Rely on report final results. This document of preliminary review on the used for any

Rate Transient Analysis

Production diagnostics provides insight into understanding flow regimes and relating to models

Case Study DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design

Preliminary: Rely on report final results. This document of preliminary review on the used for any

for specific conditions and is released for the purpose date shown. It is not to be other purposes.

Rate Transient Analysis

Results provide effective fracture surface area and permeability (to be used in reservoir simulation)

Case Study DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design Preliminary: Rely on report final results. This document of preliminary review on the used for any

for specific conditions and is released for the purpos date shown. It is not to be other purposes.

Rate Transient Analysis

Results are generally used to evaluate completion efficiency when multiple wells are analyzed

Example 1 – Correlations of rate transient analysis results with completion design parameters

- Tie to Well Completion Comparison of RTA Results vs. Completions Design
 - Example 1 illustrates a case study where increasing amount of fluid pumped (i.e., slick water jobs) yields higher total fracture surface area (through RTA).
 - Example 2 indicates that better completions (translated as higher effective fracture half-length in RTA) provide higher EUR values.

Preliminary: Rely on report final results. This document of preliminary review on the used for any F-716 EXAS REGISTERED EVEN

Hydraulic Fracture Modeling

Fracture modeling provides fracture geometry through history matching treatment pressure data

3-D View – Proppant type distribution along the fracture plane overlain the formation fracture gradient

Matching Actual Treatment Pressure Data

Petrophysical and Geomechanical Properties from Logs

- Treatment pressures were calibrated to actual data.
- Fracture properties are the main output.

Case Study DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design Preliminary: Rely on report final results. This document of preliminary review on the used for any

DEGOLVER for specific macNAUGHTON Example Content of the specific is release date show other purp

for specific conditions and is released for the purpose date shown. It is not to be other purposes.

Hydraulic Fracture Modeling

Generated fracture geometry is incorporated into a reservoir model for modeling production

Preliminary: Rely on report final results. This document of preliminary review on the used for any

Numerical Reservoir Simulation

Fracture geometry from modeling is simplified and then utilized in reservoir simulation

Reservoir Simulation Grid Overview

History Match

Elapsed time

Case Study DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design Preliminary: Rely on report final results. This document of preliminary review on the used for any

Completion Design Sensitivities

Sensitivities are performed to investigate impact of key completion parameters

Pump Rate: Base and -25%

Horiz. stresses Young's modulus Stress contrast					
Anno1ste Fixed volume Fixed volume Prop mass Fixed type Prop type 20 DFN	P	umpStep	BasePumpRate (bbl/min)	DesignPumpRate1(%) (bbl/min)	
	1 🕨		•	-25.00	
	2	Pad	12.00	9.00	
	3	(New stage	14.00	10.50	
	4	(New stage	80.00	60.00	
	5	0.25 PPA	80.00	60.00	
	6	0.5 PPA	80.00	60.00	
	7	0.75 PPA	80.00	60.00	
	8	1 PPA	80.00	60.00	
	9	1.25 PPA	80.00	60.00	
	10	1.5 PPA	80.00	60.00	
	11	1.75 PPA	80.00	60.00	

Proppant Mass: Base, -10% and -25%

Hote: Messee Yoard) modula Stees contast Stees contast Rap une Rad volume Rad volume Rad volume Rad volume Rad tope Prop tope 20 DPN	m: m						
	PumpStep		BasePropMass (b)	DesignPtopMass1(%) (b)	DesignPhopMass2(1) (b)		
	1.	1	+	-10.00	-25.00		
	2	Pad	0.00	0.00	0.00		
	3	(New stage	0.00	0.00	0.00		
	4	(New stage	0.00	0.00	0.00		
	5	0.25 PPA	1750.00	1575.00	1312:50		
	6	0.5PPA	8500.00	7650.00	\$375.00		
	7	0.75 PPA	27000.00	24300.00	20250.00		
	0	1.PPA	36000.00	32400.00	27000.00		
	9	1.25 PPA	45000.00	40499.99	33750.00		
	10	1.5 PPA	54000.00	49600.00	40500.00		
	11	1.75 PPA	63000.00	56700.00	47250.00		

<u>Fluid Type</u>: Base (slick water) and WF160 (60 lb/mgal linear gel)

Horiz. stresses Young's modulus Stress contrast Pump rate Fluid volume V prop mass						
	PumpStep		BaseFluidType	DesignFluidType1		
	1 🖡			WF160		
Fluid type	2	Pad	Base Fluid - B315(0.2	WF160		
Prop type 20 DFN	3	(New stage	HCI 15	HCI 15		
	4	(New stage	Base Fluid - B315(0.2	WF160		
	5	0.25 PPA	Base Fluid • B315(0.2	WF160		
	6	0.5 PPA	Base Fluid - B315(0.2	WF160		
	7	0.75 PPA	Base Fluid - B315(0.2	WF160		
	8	1 PPA	Base Fluid - B315(0.2	WF160		
	9	1.25 PPA	Base Fluid - B315(0.2	WF160		
	10	1.5 PPA	Base Fluid - B315(0.2	WF160		
	11	1.75 PPA	Base Fluid - B315(0.2	WF160		

Case Study

DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design Preliminary: Rely on report final results. This document of preliminary review on the used for any

for specific conditions and is released for the purpose date shown. It is not to be other purposes.

Completion Design Sensitivities

Reservoir simulation is performed with fracture geometry based on design sensitivities

Case Study DeGolyer and MacNaughton Workflow for Well Performance Analysis, Fracture Modeling and Completion Design Preliminary: Rely on report final results. This document of preliminary review on the used for any

for specific conditions and is released for the purpose date shown. It is not to be other purposes.

Considerations for Evaluation and Development

Optimal evaluation and development involves an integrated approach

Preliminary: Rely on report final results. This document of preliminary review on the used for any